Critical Path Initiative

The Role of Good Clinical Practice and Manufacturing Science in New Drug Development

Critical Path Opportunities and CBER/OCBQ

James S. Cohen, J.D.

Acting Director, Office of Compliance and Biologics Quality Center for Biologics Evaluation and Research

Critical Path Initiative

- OCBQ Product Development-Related Responsibilities
- Good Clinical Practice/Design
- Manufacturing Science
- Cross-Cut Among all Products

Related OCBQ Responsibilities

- IND reviews
- Clinical investigation oversight
- BLA reviews
- CMC expertise
- Manufacturing change reviews
- Pre-approval and manufacturing change inspections

Opportunities Through OCBQ in Critical Path

- Manufacturing science and clinical trial design planning
 - as part of pre-IND, pre-IDE, and pre-BLA process
- Expert guidance
- Facilitate effective transition from R&D stage to clinical stage to product development stage

Critical Path To New Product Development

- Expanded and early IND, IDE, and BLA guidance/discussion to facilitate --
 - Innovative science-based practices
 - Clear path to product approval
 - Efficient and effective commercial-scale manufacturing
 - Safe and effective products for patients
 - Increase in critical medical product availability
 - Avoiding regulatory problems later in development and distribution process

CBER Sponsors/Manufacturers

Range of Experience

- Established drug/biologic companies
- New product or new facility development at established or licensed companies
- Small-scale manufacturers
- Start-ups, academia, and individuals
 - Limited experience
 - Limited resources

Good Clinical Practice/Design

- Clinical studies needed to show new product safe and effective
- Rights, safety, and welfare of subjects in clinical trials paramount
- Quality/usefulness of clinical data critical to product approval
- Often new trials and new sponsors, sponsorinvestigators, and investigators in cutting edge areas (e.g., cell and gene therapies)

Good Clinical Practice/Design

How to Protect Subjects and Provide Quality Data

- Available guidance includes "ICH E6: Good Clinical Practice: Consolidated Guidance"
- Regulations (21 CFR 50, 56, 312, & 812)
- Quality management principles

Good Clinical Practice/Design

- Early dialogue in early stages of clinical trial design will facilitate:
 - Effective movement from research phase into clinical trial phase
 - Choice and training of qualified clinical investigators
 - Identification and development of monitoring responsibilities and trial monitoring plan
 - Selecting monitors
 - Role of IRB
 - Quality oversight of product manufacturing

- Efficient and effective manufacturing science design and control activities critical to product safety, effectiveness, and availability
- Consider early in the development process

Providing Safe and Effective Products

Very useful information in FDA
 Manufacturing Guidance documents

For example:

Sterile Drug Products Produced by Aseptic Processing

- www.fda.gov/cber/gdlns/steraseptic.pdf
- Also refers to other guidance documents
- Regulations (21 CFR 210-11, 600, 606, 610, 820)

- Build quality into product development process
- Choose acceptance criteria wisely
 - Based on data
 - Based on intended process
- Robust system/process critical
- Absence of planning and implementation of manufacturing science principles into development process can impact product integrity and delay product approval

Manufacturing Science Examples

- Early discussion will be beneficial when considering novel approaches to:
 - Scale-up facility design
 - Equipment qualification
 - Sampling techniques
 - Control of manufacturing processes
 - Compliance with cGMPs during product development and manufacturing stages

Examples

- OCBQ can provide guidance to facilitate decisions impacting final product quality:
 - Product delivery (liquid/lyophilized/device/ etc.)
 - Container/closure system
 - Raw materials
 - Manufacturing process

- Sampling/testing
- Logistics (manufacturing site/shipping of product)
- Technology transfer
- Scale-up
- Automation

Conclusions

- Early, informed, and effective planning
- Communication within company and with FDA
- Integration of trial design and manufacturing science issues into early development plan
- Facilitates innovation, quality science/data, new product development
- Can reduce development costs, improve likelihood of success during clinical trial and manufacturing phases
- Can expedite licensing process/approval

Conclusions

continued

- Work together to provide patients with safe and effective products, and to increase product availability
- We look forward to discussing these issues today and working with you in the critical path to new product development
- OCBQ will participate with monitors in most of the panels this afternoon to address and respond to any questions on these issues

